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Abstract

Social learning is a mechanism that allows individuals to acquire knowl-

edge from others without incurring the costs of acquiring it individually.

Individuals that learn socially can thus spend their time and energy ex-

ploiting their knowledge or learning new things. In this paper, we adapt

these ideas for their application to both optimization and multiagent

learning. The approach consists of a growing population of agents that

learn socially as they become part of the main population. We find that

learning socially in an incremental way can speed up the optimization

and learning processes, as well as improve the quality of the solutions and

strategies found.

1 Introduction

The design of systems composed of numerous autonomous entities that exhibit,
at a collective level, some desired behaviors remains an outstanding problem
in various fields including multiagent systems and population-based stochastic
optimization algorithms.

Broadly speaking, there are two alternative approaches to tackle this prob-
lem. The first one consists in using a traditional top-down approach whereby
behaviors at the individual level are carefully crafted. The main issue with this
approach is that its effectiveness depends ultimately on the designer’s ingenu-
ity and his/her application-specific experience. In some cases, it is possible to
resort to the observation of some collective behavior of interest exhibited by a
natural system in order to identify the individual behaviors that make it pos-
sible. Examples of systems that have been designed using this approach are
ant colony optimization [6] and particle swarm optimization [12,7]. The second
approach consists in using automatic learning techniques in order to find an
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appropriate mapping from the agents’ states to their actions that leads to the
observation of the desired collective level behaviors; however, learning in a mul-
tiagent environment is usually a difficult task. The first difficulty comes from
the exponential growth of the search space (defined as the space of the combined
sensor-action mappings of all the participating agents) as a function of the num-
ber of agents [10]. To overcome this problem, agents can be equipped with their
own learning algorithm, but in this situation, the main difficulties stem from
the interference caused by the co-existence of multiple learning agents whose
rewards depend on the group’s performance [18].

In this paper, we look at the effects of taking an incremental approach to
the multiagent learning problem in which agents are added to the system one
at a time. Starting with a small number of agents provides two advantages: (i)
it enables fast learning for the initial population of agents due to the reduced
interference effect that a large population provokes, and (ii) it may allow the op-
timal allocation of agents to solve a particular task. This incremental approach
is complemented by the implementation of a social learning strategy whereby
the newly added agents acquire knowledge about their environment from more
experienced agents. The resulting mechanism, that we call incremental social
learning, is aimed at facilitating scalability in the number of agents as well as
at accelerating and improving learning.

This paper is organized in two parts. In the first part, we present a study
on the effects of applying incremental social learning on a population-based op-
timization algorithm. The results are compared with those obtained with the
standalone algorithm. In the second part, we present a similar study but this
time using a multiagent system in which agents are capable of learning individ-
ually by means of embedded Q-learning algorithms. Different implementations
of the incremental social learning framework are explored.
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2 Incremental social learning

The term social learning is used to identify a class of mechanisms for knowledge
transmission between agents without the use of genetic material [15, 5]. Social
learning is attractive for the design of large multiagent systems because it allows
individuals to acquire knowledge from other more experienced agents without
incurring the costs of acquiring it individually [14]. However, theoretical models
and empirical studies conclude that relying only on socially acquired knowledge
is not always advantageous [9]. For social learning to be useful to a group,
individuals must devote some of their time and energy to learn individually or
to innovate [14].

The approach, that we call incremental social learning, consists of a growing
population of agents which learn socially when they become part of the main
group and learn individually when they are already part of it. The growing
population strategy is based on the observation that, in nature, newborn indi-
viduals are particularly favored by social learning because it allows them to learn
many skills very rapidly from the adult individuals that surround them [8]. The
algorithmic structure of the incremental social learning framework is outlined
below.

Algorithm 1 Incremental social learning.

/* Initialization */
t ← 0
Initialize environment Et

Initialize primogenial population of agents Xt

/* Main loop */
while Stopping criteria not met do

if Agent addition schedule or criterion is not met then

Xt+1 ← ilearn(Xt,Et) /* Individual learning */
else

Create new agent anew

slearn(anew,Xt) /* Social learning */
Xt+1 ← Xt ∪ {anew}

end if

Et+1 ← update(Et) /* Update environment */
t ← t + 1

end while

After initializing the environment and the initial population of agents (that
we call primogenial), the main learning loop begins. If no agents are to be
added, the agents in the current population learn individually. An agent addi-
tion schedule or criterion is used to control the rate at which agents are added to
the main group. When a new agent is created and before it becomes part of the
population, it learns socially from a subset of the already experienced agents.
In Algorithm 1 above, the environment update state is made explicit in order to
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note the fact that the environment may be dynamic. In a real implementation,
the environment can change at any time and not necessarily at the end of a
training round.

A small number of agents at the beginning of the learning process should
reduce the interference caused by the co-existence of many learning agents. The
agent addition schedule is used to create time delays that allow agents to learn
individually from the interaction with the environment and with other agents.
To make a parallel with natural systems, this time delays can correspond, for
example, to the time that exists between the birth of an individual and the birth
of its offspring. When a new agent is created, the agents that are part of the
main population already acquired some updated knowledge of the world. Much
of the effort spent by these agents in learning by themselves can be saved for the
new agents by means of social learning. Incrementally growing the population
size may also serve to allocate the minimum number of agents required to solve
a particular problem.

The actual implementations of the individual and social learning mechanisms
are independent from the incremental social learning framework outlined above.
Both generic or application-specific mechanisms may be used. In the two case
studies presented in the following sections, we explore different implementations
of the incremental social learning framework.

3 Incremental social learning

in optimization

In this section we evaluate the effectiveness of the incremental social learning
strategy when applied to a population-based optimization algorithm. We first
describe the optimization algorithm employed and the implementation details
of the incremental social learning framework. Finally, we present the results of
a series of experiments run on a number of benchmark optimization problems.

3.1 Particle Swarm Optimization

Table 1: Benchmark optimization problems
Name Definition Range

Ackley −20e−0.2
√

1

n

P

n
i=1

x2

i − e
1

n

P

n
i=1
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Rastrigin 10n +
∑n

i=1 (x2
i − 10 cos(2πxi)) [-5.12,5.12]n

Rosenbrock
∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] [-30,30]n

Schwefel 418.9829n +
∑n

i=1 −xi sin(
√

|xi|) [-500,500]n

Step 6n +
∑n

i=1 ⌊xi⌋ [-5.12,5.12]n

The optimization algorithm we use is the particle swarm optimization (PSO)
algorithm. It was inspired by the behavior of birds while flocking [12, 7]. In
a PSO algorithm, a population of agents (called particles), whose positions

4



in a multidimensional space represent potential solutions to an optimization
problem, move by updating their velocity according to the information gathered
by the group (called swarm). Every iteration, each particle is attracted toward
its own previous best position (with respect to an objective function) and toward
the best position found by the particles in its neighborhood. Neighborhood
relations are usually defined in advance through a population topology which
can be defined by a graph G = {V,E}, where each vertex in V corresponds
to a particle in the swarm and each edge in E establishes a neighbor relation
between a pair of particles. The velocity and position updates of a particle i
over dimension j are as follows

vt+1
i,j = χ · [vt

i,j + ϕ1 · U1 · (pt
i,j − xt

i,j) + ϕ2 · U2 · (lti,j − xt
i,j)] ,

and
xt+1

i,j = xt
i,j + vt+1

i,j ,

where vt
i,j and xt

i,j are the particle’s velocity and position at time step t respec-
tively, pt

i,j is the particle’s best position so far, lti,j is the best position found by
the particle’s neighbors, ϕ1 and ϕ2 are two parameters, U1 and U2 are two uni-
formly distributed random numbers in the range [0, 1), and χ is a constriction
factor that is used in order to avoid an “explosion” of the particles’ velocity.

Clerc and Kennedy [4] found the relation χ = 2k/
∣

∣

∣
2 − ϕ −

√

ϕ2 − 4ϕ
∣

∣

∣
, where

k ∈ [0, 1], and ϕ = ϕ1 + ϕ2 > 4, to compute it.
Rather than learning individually, particles engage in some form of horizontal

social learning whereby particles learn from the individuals in the main group.
Indeed, the PSO algorithm can be seen as a simple model of social learning where
agents try to imitate the “behaviors” of the individuals in their neighborhood
that receive the greatest rewards [11,13].

3.2 Experimental Setup

The particle addition criterion used in our experiments is solution quality stag-
nation. Whenever the solution improvement stagnates for a certain number
of consecutive iterations k, a new particle is added. In our experiments, k ∈
{1, 5, 10}. Social learning is implemented using a simple rule that moves the new
particle’s previous best position from its initial random location in the search
space to a location that is closer to the previous best position of a particle that
serves as a “model” to imitate. The rule is applied in a component-wise fashion
and is defined as

p′new,j = pnew,j + U · (pmodel,j − pnew,j), (1)

where p′new,j is the new particle’s updated previous best position, pnew,j is the
new particle’s original previous best position, pmodel,j is the model’s previous
best position and U is a uniformly distributed random number in the range
[0, 1). Two strategies are used in order to select the model particle: (i) at
random, or (ii) the best particle of the swarm. Note that the new particle does
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not copy the model particle but only moves closer to it. The new particle’s
velocity is randomly initialized.

The parameter settings for the PSO algorithm are the most commonly found
in the literature, that is, the constriction factor χ is set to 0.729 and the accel-
eration coefficients ϕ1 and ϕ2 are both set to 2.05. Two population topologies
are used: A fully connected one in which each particle is neighbor to all other
particles in the swarm, and a ring topology, in which each particle is neighbor
to two other particles.

The benchmark problems that are used to evaluate the effectiveness of us-
ing an incremental social learning strategy over a PSO algorithm are listed in
Table 1. In all cases, their 100-dimensional form is used (i.e., n = 100). The
location of the problems’ global optimum is randomly shifted within the search
range (except for Schwefel’s function) in each of the 100 independent runs that
were used.

3.3 Results

The results obtained with the two strategies for selecting the model particle (i.e.,
one particle at random or the best one) do not show a significant difference in
most of the studied cases1. This result may come from the fact that selecting
the best particle or a random one from a group of particles that are close to
each other in the search space is, in effect, the same.

The relative difference between the results obtained with the fully connected
and ring topologies is dependent on the problem being solved. The solution
improvement during the first hundreds of function evaluations is usually faster
with a fully connected topology, while the final best solutions are found with a
ring topology. The factor that produces the most significant differences is the use
of the incremental social learning approach. As an example, consider the results
shown in Figure 1. These results correspond to the median solution quality
development over time obtained with the constant population PSO algorithm
and the incremental social learning PSO algorithm, both using a fully connected
topology, on the five benchmark problems used in our experiments. In the case
of the incremental social learning PSO algorithm, the best particle of the swarm
is used as model.

The results show that with a constant population PSO algorithm there is
usually a trade-off between solution quality and speed. The incremental social
learning PSO algorithm does not have this problem as it seems to benefit from
starting with a minimal population size. It finds solutions of the same, or even
better, quality than a constant population PSO algorithm without the need of
setting the population size in advance (although there is another parameter:
the particle addition rate). There are cases (e.g., with Schwefel’s and the Step
functions) in which starting with one particle seems not to be the best strategy.
However, the behavior of the algorithm in these cases is as if it waited for the

1Due to space constraints, we refer the interested reader to
http://iridia.ulb.ac.be/supp/IridiaSupp2008-009/ for access to all supporting data.
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Figure 1: Median solution quality development over time. Different population
sizes are used for the traditional PSO algorithm and different stagnation thresh-
olds are used for the incremental social learning approach. In all cases a fully
connected topology is used.
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right population size to then proceed with the optimization process. In spite
of this “waiting time”, the incremental social learning PSO algorithm obtained
the best results at the end of the allocated number of function evaluations. The
results also show that the role of the stagnation threshold which controls the
rate at which particles are added to the main swarm is that of an exploration-
exploitation control parameter. Faster rates encourage exploration while slower
rates encourage exploitation. This is clearer when the results obtained with a
ring topology (which encourages exploration) are compared with those obtained
with a fully connected topology (which encourages exploitation). With a fully
connected topology, the fastest particle addition rate (k = 1) produced the best
results while with a ring topology, the slowest rates (k = {10, 5}) did.

4 Incremental social learning

in multiagent systems

In this section we present the effects of using the incremental social learning
framework on a multiagent system composed of learning agents. We describe
the algorithms used, the experimental setup and the results obtained.

4.1 Individual Learners in a Multiagent

System

By letting agents learn by themselves, the computational complexity of the
multiagent learning problem can be reduced [2]. In this paper we consider a
multiagent system composed of individually learning agents each of which uses
a Q-learning algorithm for that purpose.

Q-learning allows an agent i to learn an action-value function Qi(a, s) that
represents the value of taking a particular action a in a particular state s. The
goal is to find a policy that maximizes the rewards received for executing a series
of actions starting from an initial state. The so-called Q-values are updated
using the rule

Qi(a, s) = Qi(a, s) + α · (ri(s) + γ · max
a′

Qi(a
′, s′) − Qi(a, s)),

which is applied whenever action a is taken in state s leading to state s′. ri(s)
is the reward received by the agent in state s, α is parameter known as the
learning rate and γ is another parameter known as the discount factor.

The effectiveness of this approach depends on the constraints imposed by
the problem being tackled. If agents can act more or less independently from
others, this method can provide good results in a reasonable amount of time [1].

4.2 Experimental Setup

We use the multiagent grid world problem as described by Agogino and Tumer [1].
In this problem, a square grid populated by agents that can move, one patch
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at a time, in any of four directions (up, down, left and right). An agent’s state
is its location on the grid. Each grid patch can contain a token with a value
within the range [0, 1] that represents the reward given to the agent that first
moves to that patch. If no token is present, the reward is zero. The agents’ aim
is to maximize the total reward received after a fixed number of time steps. In
our experiments, 100 agents are used. The whole learning process lasts for 1000
rounds. In each one of these rounds agents start from an initial state, move for
50 time steps, and then are moved back to their initial state.

Two configurations of a 20 × 20 environment are used. In the first one,
only one fourth of the world is populated with tokens with values that decrease
inversely with the distance to the center of the world. In this configuration, the
token-value landscape resembles a cliff. In the second configuration tokens are
clustered. The location of the clusters is selected uniformly at random. In our
experiments, 33 clusters are used. Their width and the values associated with
their tokens are set according to a Gaussian function with standard deviation
σ = 1. In both configurations, all token values are normalized so that the
maximum collective reward is equal to one.

In these experiments, agents are added according to a predefined schedule.
We experiment with three schedules, adding agents every 1, 5, and 10 rounds
until the maximum number of agents is reached. Social learning is implemented
using a subset of the system’s current population of agents. Three different
agents are selected at random to update the new agent’s Q-values using the rule

Q′

new(a, s) = Qnew(a, s)

+ U1 · (Qmodel1(a, s) − Qnew(a, s))

+ U2 · (Qmodel2(a, s) − Qmodel3(a, s)), (2)

where Q′

new(a, s) is the new agent’s new Q-value, Qnew(a, s) is the new agent’s
original Q-value, and Qmodel1,2,3

(a, s) are the models’ Q-values. The random
numbers U1 and U2 are drawn from a uniform distribution in the range [0, 1).
In order to use this rule, at least three agents must compose the primogenial
population. The rule is inspired by the update rule used in differential evolu-
tion [19].

In all the experiments, the learning rate α is set to 0.5 and the discount
factor γ is set to 0.9. The action selection is controlled by an ǫ-greedy strategy
with ǫ set to 0.2. The results are based on 100 independent runs.

4.3 Results

The median of the collective reward (i.e., the sum of the agents’ accumulated
rewards) distribution over time is shown in Figure 2.

In the cliff environment, several learning rounds are needed before a sus-
tained improvement of the collective reward is observed. This contrasts with
the results obtained in the clustered environment, in which even random move-
ments make the system obtain a collective reward greater than zero. This result
is expected given the greater difficulty of the cliff environment in which the
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Figure 2: Median of the collective reward distribution over time. Different
agent addition schedules are used for the implementation of the incremental
social learning framework.
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highest rewards are located at the center of the environment. Since rewards are
given only to the agent that first visits a given patch, there is some competi-
tion among the agents to arrive first to the patches where the highest-valued
tokens are located. The effects of the incremental social learning approach are
more evident in the results obtained in the cliff environment. The improvement
of the collective reward is faster if an incremental social learning approach is
used. This suggests that the competition for rewards among 100 agents plays
an important role in this problem. The incremental approach seems to benefit
from the faster learning that happens when no major interference among agents
occurs, which is the case at the beginning when just a few agents populate the
environment. The social learning rule allows agents to avoid conflict and to
use their time in exploiting the acquired knowledge and to contribute to the
collective reward. Different agent addition schedules influence differently the
results obtained. With the fastest schedule, the improvement is faster but the
final reward is slightly lower that the one obtained with slower schedules.

In the clustered environment, the benefits of using an incremental social
learning approach are less evident. In fact, the approach delays the improvement
of the collective reward. This might be the result of the reduced competition
among agents as a result of the token distribution in this environment.

5 Related work and discussion

In Section 1 we mentioned that one of the main problems that arises when
applying learning techniques in a multiagent scenario is that there is some in-
terference due to the co-existence of agents that are learning at the same time.
From an agent’s perspective, the problem is that the appropriate behavior is
difficult to learn because the consequences of its actions depend on what other
agents are doing, which in turn depends on what others are doing and so on.
A further complication comes from the fact that, while learning, agents change
their behavior which may render other agents’ learned behaviors obsolete [18].
A common way to deal with this problem is to reduce the number of learning
agents in the system. For example, Guestrin et al. [10] use coordination graphs
in order to reduce the complexity of the multiagent coordination problem. The
idea comes from the observation that not all agents’ actions must be tightly
coupled in order to solve a problem. The incremental social learning frame-
work tackles this problem by actually reducing the number of agents in the
system; however, the size of the primogenial population should be aligned with
the complexity of the problem at hand.

The idea of letting the size of the population grow over time has been ap-
plied by Noble and Franks [16], who already pointed out the fact that newborn
animals may benefit from the observation of elder individuals and implemented
a simulation where the population of agents grows over time. In their work,
they study the effects of using different social learning mechanisms and not on
the utility of learning socially in an incremental way as we do.

A possible alternative to the individual learners approach is to try to control
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the learning process from a global level through a performance measure, common
to all agents. Obtaining results with this approach, though possible in theory, is
very difficult in practice because small changes in the agents’ behavior can lead
to very different collective level behaviors [3]. In fact, designing performance
measures that allow agents to learn appropriate behaviors is a field of study on
its own [17].

We believe that the independence of the incremental social learning frame-
work from the actual social and individual learning algorithms makes it attrac-
tive for its application to a wide range of situations. However, the problem must
have certain features if the incremental social learning approach is to provide
any advantage over other approaches. One such feature is that it should be
possible for an individual to know how well it is performing at any given time.
This is very important because it is the basis for individual learning. Moreover,
the agents must be capable of communicating relatively complex messages, a
capability that is not always available, for example, in small robots.

6 Conclusions and Future Work

Social learning allows agents to acquire knowledge from others without incurring
the costs of acquiring it individually. For naive individuals, it is particularly
useful as it effectively provides them a shortcut to knowledge that otherwise
may take them a long time to acquire.

In this paper we have defined an incremental social learning framework that
consists of a growing population of agents that learn socially as they become part
of the main population and learn individually once they are already part of it.
The framework is independent of the underlying social and individual learning
algorithms. By increasing gradually the size of the population, it is possible to
accelerate the first learning phase in domains where inter-agent conflicts exist.
Furthermore, it enables the possibility of allocating the minimum number of
agents required to solve a particular problem.

To evaluate the framework’s potential, we applied it on a population-based
optimization algorithm as well as on a multiagent learning system. The results
show that by using an incremental social learning approach we can accelerate
the optimization/learning process as well as improve the quality of the solutions
found.

Future work should be focused on determining the best suited implemen-
tation of the framework for particular learning/optimization algorithms and
problems. Another line of research is the application of the framework in online
learning scenarios.

7 Acknowledgments

Marco A. Montes de Oca is funded by the Programme Alβan, the European
Union Programme of High Level Scholarships for Latin America, scholarship No.

12



E05D054889MX, and by the SWARMANOID project funded by the Future and
Emerging Technologies programme (IST-FET) of the European Commission
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