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Abstract— Mobile robots are said to be capable of self-
assembly when they can autonomously form physical connec-
tions with each other. Despite the recent proliferation of self-
assembling systems, little work has been done on using self-
assembly to add functional value to a robotic system, and even
less on quantifying the contribution of self-assembly to system
performance.

In this study we demonstrate and quantify the performance
benefits of i) acting as a physically larger self-assembled entity,
ii) using self-assembly adaptively and iii) making the robots
morphologically aware (the self-assembled robots leverage their
new connected morphology in a task specific way).

In our experiments, two real robots must navigate to a target
over a-priori unknown terrain. In some cases the terrain can
only be overcome by a self-assembled connected entity. In other
cases, the robots can reach the target faster by navigating
individually.

I. INTRODUCTION

Self-assembly is a widely observed naturally occurring
phenomenon [16]. Self-assembly adds functional value to
biological systems and has evolved both at the cellular level
and at the level of distinct organisms [1], [2]. Members of the
ant species Œcophylla longinoda, for example, link to one
another to form bridges that other ants can then traverse [9].

Self-assembly in biological systems has been of inspiration
to the robotics community [5]. This study concerns the use of
self-assembly with autonomous robots [7]. Existing systems
of particular relevance, therefore, are those in which the
components that assemble are self-propelled. A variety of
such systems have been implemented and studied over the
past fifty years [4], [6], [8], [12], [14], [17], [18]. However,
there has been little research on how self-assembly can add
functional value to a system of autonomous robots, and
even less on quantifying the contribution of self-assembly
to system performance.

In this study we consider a task that requires two real
robots to navigate towards a target light source over a-priori
unknown terrain. In some of our experimental environments
the terrain that the robots encounter can be navigated by a
single robot individually. In other environments, the robots
must self-assemble and navigate as a connected entity to
successfully reach the target.

We demonstrate and quantify the contribution to system
performance of the self-assembly mechanism. Initially, we

consider the simple benefits of scale conferred by self-
assembly: some tasks can be carried out more effectively if
the robots act as a larger connected entity [10]. For example,
a larger robotic entity might have increased stability for
rough terrain navigation [6] or increased strength for object
transportation [15].

We go on to show that the system is more efficient if
the robots choose autonomously when and if to assemble
based on the environment they encounter. Such adaptivity
is innovative, as in most existing studies on self-assembly
in collective (and modular) robotics the robots are statically
programmed in advance either to act individually or to self-
assemble. Typically, the experiment is set up to provide
a context in which the pre-programmed behaviour appears
meaningful. In this study, we quantify the benefits of adap-
tive self-assembly over and above static pre-programmed
behaviour, extending our previous work in which we im-
plemented an adaptive self-assembly mechanism [13].

Finally, we argue that self-assembling systems can im-
prove their performance by making the connecting robots
‘morphology aware’. We present a mechanism through which
the self-assembled robots leverage their new connected mor-
phology in a task oriented way. For our task this means that
the self-assembled robotic entity rotates its body with respect
to the terrain it encounters so as to maximise its stability.

II. EXPERIMENTAL SETUP

A. The S-Bot

We use the SWARM-BOT robotic platform [11]. This
platform is made up of independent mobile autonomous
robots called s-bots (see Fig. 1) that can form physical
connections with each other. The entity formed by two or
more connected s-bots is called a swarm-bot.

The s-bot is 12 cm high without its perspex camera turret,
and has a diameter of 12 cm without its gripper. Thanks to
its traction system that combines tracks and wheels, the s-bot
is mobile on uneven terrain whilst still retaining the ability
to rotate on the spot efficiently. The main s-bot body houses
most of its sensory and processing systems and can rotate
with respect to the chassis by means of a motorised axis.

Physical connections between s-bots are established by
a gripper-based connection mechanism. Each s-bot is sur-
rounded by a transparent ring that can be grasped by other
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Fig. 2. Scale diagram of the three possible hill orientations. The arena for each of the seven environments used in this study measures 210 cm x 105 cm.
Three environments contain the ‘moderate’ hill (2.8 cm high, navigable by a single s-bot). Three environments contain the ‘difficult’ hill (6.5 cm high,
not navigable by a single s-bot). One environment has no hill. The starting area and target area are demarcated by the hill and the arena boundaries (in
the no-hill environment the target area is considered to be the same as for environments with hill orientation 1). Starting positions are marked by crosses.

Fig. 1. Left: The s-bot. Above Right: The s-bot connection mechanism.
Below Right: The s-bot traction system.

s-bots. An optical light barrier inside the s-bot gripper
indicates when another s-bot’s ring (or another graspable
object) is between the jaws of the gripper. S-bots advertise
their location by means of 8 sets of RGB coloured LEDs
distributed around the inside of their transparent ring. These
LEDs can also provide indications of the s-bot’s internal state
to other nearby s-bots.

The s-bot has an omni-directional camera that depending
on light conditions can detect other s-bots’ LEDs up to 40 cm
away or an external light source up to 200 cm away. The s-
bot has 15 proximity sensors distributed around its body that
allow for the detection of obstacles. A 3-axes accelerometer
provides information on the s-bot’s inclination that can be
used to detect if the s-bot is in danger of falling.

Other sensors provide the s-bot with proprioceptive infor-
mation about its internal motors. This includes positional in-
formation (e.g., of the rotating turret) and torque information
(e.g., of forces acting on the traction system).

B. The Task

We conduct experiments in seven different environments
(see Fig. 2). In each environment we designate a ‘starting
area’ and a ‘target area’. Six of the seven environments
contain a hill. In these environments the target area is the
region containing the light source demarcated by the hill
and the walls of the arena. In the hill-less environment we

designate the ‘target’ area as a specific rectangular region
containing the light source.

We use two types of hill — a ‘moderate’ hill and a
‘difficult’ hill. The moderate hill is 2.8 cm high and can be
overcome by a single s-bot. The difficult hill is 6.5 cm high
and is only navigable if two or more s-bots assemble into
a bigger connected entity (the steepness of the hill would
cause a single s-bot to topple).

The initial position of each s-bot in the starting area is
assigned randomly by uniformly sampling without replace-
ment from a set of 12 possible starting points. The s-bot’s
initial orientation is chosen randomly from a set of 4 possible
directions. To complete the task the s-bots must reach the
target area without toppling over.

III. SIMPLE BENEFITS OF SCALE

In this section we consider the simple benefits of scale
derived by acting as a larger connected entity. We conducted
experiments with two different controllers in the difficult hill
environments. When executing the adaptive self-assembly
controller, the s-bots make use of self-assembly in order
to overcome the hill. When executing the phototaxis only
controller, the s-bots attempt to navigate to the target indi-
vidually. We first present the two controllers, then discuss
their relative performance.

A. Control

All of the controllers presented in this study (not just in
this section) have the following features in common: each s-
bot is completely autonomous, and has no a-priori knowledge
of the environment it is in or of its initial position and
orientation. A single controller is copied onto each of the
s-bots and executed on each of the s-bots independently.
Communication (when used) is visual and strictly local —
the s-bots illuminate their LED rings with different colours
to advertise their location and to provide indications of their
internal state to other s-bots within visual range.

1) Adaptive Self-Assembly Controller: The controller is a
finite state machine (see Fig. 3). Fig. 4 illustrates a two s-bot
system executing the controller. An s-bot starts by illuminat-
ing its blue LEDs and navigating independently towards the
target light source (state Solo Phototaxis). If the s-bot
finds itself on a hill too difficult for it to pass alone (i.e., if its
3D accelerometers detect an inclination angle that exceeds
a preprogrammed threshold), or if it sees a green s-bot or a
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Fig. 3. Finite State Machine representing the Adaptive Self-Assembly Con-
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Fig. 4. (a): Two s-bots start from random positions and orientations.
Initially, they perform individual phototaxis, and have their blue LEDs
illuminated. (b): One s-bot detects a slope it cannot overcome alone
and illuminates green LEDs. The other s-bot detects colour green (local
communication). (c): The group aggregates and self-assembles. (d): The
s-bots collectively overcome the rough terrain and reach the target area

red s-bot, it retreats away from the hill for a given length
of time (state Anti Phototaxis). It then switches into
state Aggregate, illuminates its green LEDs and tries to
get close to a red (assembled) s-bot, or if no red s-bot is
perceived, to search for and get close to another green (ag-
gregating) s-bot. In the latter case, if the s-bot is sufficiently
close to another green s-bot and can still see no other red s-
bots, it can trigger self-assembly with a given probability by
becoming a stationary seed (state Assembly Seed). A seed
s-bot lights up its red LEDs, and waits until a timeout has
expired. If it sees another red s-bot within the timeout period,
it reverts to state Aggregate. Otherwise, after the timeout
it switches to state Group Phototaxis. If an aggregating
s-bot gets sufficiently close to a red (assembled) s-bot, then it
starts self-assembling (state Self Assembly). Assembled
s-bots switch to state Group Phototaxis. An s-bot in
state Group Phototaxis illuminates its red LEDs, and

navigates (collectively) to the target light source once it can
no longer detect any green (aggregating) s-bots.1

2) Phototaxis Only Controller: This controller is a
modified version of the adaptive self-assembly controller
in which the transition to state Anti Phototaxis is
disabled. Thus, only the states Solo Phototaxis and
Avoid Obstacle are executed. Each s-bot moves inde-
pendently towards the light at a constant speed irrespective
of the type of terrain it encounters.

B. Comparative Performance

We conducted 60 trials with each controller in the difficult
hill environments (20 trials per hill orientation). To minimise
damage to the robots, we used just a single robot for the trials
of the phototaxis-only controller.2

When executing the phototaxis-only controller, the s-bot
failed to overcome the hill in all 60 trials. In each trial the
s-bot reached the hill and then toppled backwards due to the
steepness of the slope. To confirm that the s-bot was failing
due to the intrinsic properties of the slope, we repeated this
experiment at a number of different constant speeds and
observed the same result.

When executing the adaptive self-assembly controller, both
s-bots successfully self-assembled into a two s-bot swarm-
bot in every trial. In 21 trials (35%) the swarm-bot succeeded
in overcoming the hill, and thus completed the task. In
the other 39 trials (65%) the assembled swarm-bot failed
to overcome the hill. These failures happened when the
assembled swarm-bot moved towards the light source with
an orientation overly parallel to the orientation of the hill.

Overall, the results show that the additional stability
provided by navigating as a larger self-assembled entity (i.e.,
as a two s-bot swarm-bot instead of individually) caused
the task completion rate to increase from 0% to 35% (a
significant increase according to the two-tailed Fisher’s exact
test, p < 0.001).

IV. EFFICIENCY GAINS THROUGH ADAPTIVITY

We demonstrate the feasibility of adaptive self-assembly
by analysing the behaviour of the adaptive self-assembly con-
troller (see section III-A.1) in different environments, some
of which require self-assembly (difficult hill environments),
and some of which are navigable individually (moderate hill
and no-hill environments). In section IV-A we demonstrate
that the system is able to ‘choose’ appropriate behaviour
adaptively based on the environment encountered.

In section IV-B we quantify the benefits of adaptivity
by comparing task completion speed of the adaptive self-
assembly controller against that of a non-adaptive controller
— the preemptive self-assembly controller. The preemp-
tive self-assembly controller is a modified version of the
adaptive self-assembly controller in which the start state is
Aggregate instead of Solo Phototaxis. Using this

1For a more detailed description of this controller refer to [13].
2We make the assumption that the task completion rate of a single robot

equals the task completion rate of two independently navigating s-bots.
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Fig. 5. Break-down of mean completion times for s-bots using the
preemptive self-assembly controller (left bar) and the adaptive self-assembly
controller (right three bars) in no-hill, moderate hill and difficult hill
environments. Only data from completed trials are presented (number of
completed trials and number of trials in total are indicated above each bar).

controller, the s-bots thus aggregate and self-assemble irre-
spective of the environment. The connected swarm-bot entity
then performs group phototaxis to the light source.

A. Validation of the Adaptive Mechanism

With the adaptive self-assembly controller, we conducted
60 trials in the difficult hill environments (already discussed
in section III-B), 60 trials in the moderate hill environments
and 20 trials in the no-hill environment.

In the 60 trials in the difficult hill environments, both s-
bots successfully detected the slope in every trial and ‘chose’
to assemble into a two s-bot swarm-bot. In the 80 trials
in the moderate hill and no-hill environments, both s-bots
correctly ‘chose’ not to self-assemble and to navigate to the
target individually. Thus the adaptive mechanism correctly
classified the environment in all 140 trials.

B. Comparative Performance

We conducted 20 trials with the preemptive self-assembly
controller in the no-hill environment. This provides a base-
line against which we compare the adaptive self-assembly
controller. Throughout this section we assume that the mean
completion time of the preemptive self-assembly controller
in the no-hill environment is a lower bound for the mean
completion time of the same controller in moderate hill or
difficult hill environments.

Fig. 5 shows a break-down of mean completion times for
the preemptive self-assembly controller and the adaptive self-
assembly controllers in no-hill, moderate hill and difficult hill
environments.

In the no-hill environment, the adaptive self-assembly con-
troller performed significantly better than the preemptive self-
assembly controller (two-tailed Mann-Whitney, p < 0.001).
The mean task completion times were respectively 22.9 s and

†Upper bound percentage, as it is calculated using a lower bound for the
mean completion time of the preemptive self-assembly controller.

54.1 s. The adaptive self-assembly controller took on average
57.7% less time to complete the task than the preemptive self-
assembly controller. Looking at the break-down of the mean
completion times in Fig. 5, we can see that s-bots using the
preemptive self-assembly controller spent over half of their
time on actions that were not necessary to complete the task
(i.e., aggregation and self-assembly).

In the moderate hill environments, the mean completion
time for s-bots using the adaptive self-assembly controller
was 29.0 s, which is 27.1% more than the mean completion
time for the same controller in the no-hill environment.
This increase is due to the extra overhead of environment
classification, which takes place during phototaxis—s-bots
using the adaptive self-assembly controller slow down on
the slope to test its navigability. Nevertheless, even using the
lower bound mean completion time for the preemptive self-
assembly controller, the adaptive self-assembly controller
still significantly outperforms the preemptive self-assembly
controller (two-tailed Mann-Whitney, p < 0.001). In the
moderate hill environments, the mean completion time for
the adaptive self-assembly controller was 46.4% less than
the lower bound mean completion time for the preemptive
self-assembly controller.

In contrast, in environments where self-assembly is neces-
sary (difficult hill environments), it is intuitively clear that the
preemptive self-assembly controller is more efficient than the
adaptive self-assembly controller. S-bots using the adaptive
self-assembly controller have a major extra overhead of en-
vironment classification consisting of initial solo-phototaxis,
hill detection and anti-phototaxis (see Fig. 5). The mean
completion time for the adaptive self-assembly controller in
the difficult hill environments was 80.4 s.

Thus, the relative frequency with which the s-bots en-
counter the different environments determines which of the
two controllers is more efficient. If we consider a distribution
of environments containing only no-hill and difficult hill
environments, then we can use the mean completion times
to calculate the upper bound percentage of no-hill environ-
ments encountered, α, for which the efficiency of the two
controllers is identical†:

22.9α + 80.4(1− α) = 54.1 (1)
⇒ α = 0.457 (2)

We conclude that the adaptive self-assembly controller is
more efficient than the preemptive self-assembly controller if
more than 45.7%† of encountered environments are no-hill
environments. If we consider a distribution of environments
containing only moderate hill environments and difficult hill
environments, a similar analysis reveals that the adaptive
self-assembly controller will be more efficient if at least
51.3%† of the environments are moderate hill environments.

V. BENEFITS OF MORPHOLOGY AWARENESS

Using the adaptive self-assembly controller, the s-bots
always correctly responded to the difficult hill environments
by self-assembling. However, the overall task completion
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Fig. 6. The morphology aware controller — finite state machine extension of the adaptive self-assembly controller. The s-bot first executes the adaptive
self-assembly controller (see Fig. 3). However, instead of executing the Group Phototaxis state the s-bot switches into state Adaptive Phototaxis,
either as a lead s-bot (the s-bot that seeded self-assembly) or as a follower s-bot (all other s-bots).
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Fig. 7. Execution of the morphology aware controller. (a): The s-bots have
already adaptively aggregated and self-assembled. The connected swarm-
bot approaches the hill with an inappropriate orientation. (b): The swarm-
bot performs antiphototaxis away from the hill and starts to rotate. (c):
The swarm-bot rotates until it has a more appropriate orientation (based on
memory of the hill orientation). (d): The swarm-bot recognises that it has
an appropriate orientation and overcomes the hill.

rate for these environments was not high — only 35% of
the s-bots completed the task. This is because a two s-bot
swarm-bot topples over whenever it approaches the difficult
hill with an orientation that is insufficiently perpendicular
to the orientation of the hill. Such inappropriate swarm-
bot orientations occurred frequently in the difficult hill
experiments, as the approach orientation of the swarm-bot
was purely random. Immediately after self-assembling into
a swarm-bot, the constituent s-bots would both just perform
phototaxis. Thus the swarm-bot would approach the hill with
whatever orientation it happened to assume as it was formed.

In this section, we present a mechanism which allows the
s-bots to leverage the morphology of the connected swarm-
bot in a task oriented way. The s-bots ensure that the swarm-
bot is appropriately rotated with respect to any rough terrain
encountered so as to keep the vertical projection of the
swarm-bot’s center of gravity inside its footprint.

A. Morphology Aware Controller

We extended the adaptive self-assembly controller (see
Fig. 3) to allow a swarm-bot that assembles with a linear
morphology to detect the orientation of a hill and rotate in
order to approach the hill at an appropriate angle.3

Fig. 6 shows the finite state machine extension for the mor-
phology aware controller. Fig. 7 illustrates a two s-bot system
executing the morphology aware controller. The s-bots start
by executing the adaptive self-assembly controller. How-
ever, instead of executing the final Group Phototaxis
state of the adaptive self-assembly controller, the s-bots
start execution of the morphology aware controller in state
Adaptive Phototaxis.

In state Adaptive Phototaxis the s-bots perform
collective phototaxis while constantly checking the orienta-
tion of any hills they encounter with respect to the orientation
of the swarm-bot (each s-bot uses its 3D accelerometers
to determine the orientation of the hill and its camera to
determine the orientation of the swarm-bot). If a hill is
encountered and the swarm-bot is appropriately rotated with
respect to the hill (perpendicular to the orientation of the hill
with a tolerance of 20◦) the s-bots continue performing pho-
totaxis to the light source, but no longer check the orientation
of any encountered hills (state Simple Phototaxis).
If the swarm-bot is not appropriately rotated, the s-bots
remember the orientation of the hill and retreat away from the
hill for a given length of time (state Anti Phototaxis).
They rotate until the swarm-bot is appropriately rotated with
respect to the remembered hill orientation (state Rotate),
and then start performing collective phototaxis again (state
Adaptive Phototaxis).

We use a leader-follower architecture. The s-bot that
seeded the self-assembly process becomes the lead s-bot and
is responsible for determining whether or not the swarm-bot
is appropriately rotated. Using its LEDs, the lead s-bot issues

3Note that in our experiments, since there are only two s-bots self-
assembling, the assembled swarm-bot must be linear, and there will always
be a single lead s-bot and a single follower s-bot. The controller has,
however, been written to be applicable to a linear swarm-bot of arbitrary
length — hence the instruction propagation mechanism. To let more than
two s-bots self-assemble into a linear formation, a more elaborate control of
the self-assembly process would be required. This is a subject of ongoing
research [3].



instructions to advance, retreat or rotate to all other s-bots
(follower s-bots) in the swarm-bot. Follower s-bots illuminate
their own LEDs to mimic the LEDs of the s-bot they are
gripping (which is guaranteed to be closer to the lead s-bot
in a linear morphology). In this way instructions propagate
along the swarm-bot from the lead s-bot to all the follower
s-bots. The only exception is if a follower s-bot detects the
hill before the lead s-bot, in which case the instruction to
retreat propagates in the other direction.

Below, we detail the different states of the morphology
aware controller and the state transition conditions.

State Adaptive Phototaxis

Both the lead s-bot and the follower s-bot illuminate their
red LEDs.

1) Lead S-Bot: If the lead s-bot detects a hill, it moni-
tors whether or not the swarm-bot is appropriately rotated
with respect to the orientation of the hill. Orientation of
the hill is measured using the accelerometers. Orientation
of the swarm-bot is calculated based on the positions of
nearby LEDs detected with the camera. If the swarm-
bot is appropriately rotated, the lead s-bot switches into
state Simple Phototaxis. Otherwise, the lead s-bot
switches into state Anti Phototaxis. When the lead s-
bot switches into state Anti Phototaxis it stores the
orientation of the hill with respect to the target light source
for later use in state Rotate.

If the lead s-bot perceives green, it assumes that a follower
s-bot of the linear swarm-bot has detected the presence of the
hill, and therefore switches into state Anti Phototaxis.
In this case, it uses the direction towards the nearest fol-
lower s-bot (instead of its accelerometers) to estimate the
orientation of the hill.

2) Follower S-Bot: If the follower s-bot detects a hill or
perceives green, it switches into state Anti Phototaxis.
The follower s-bot does not check the alignment of the
swarm-bot.

State Anti Phototaxis

Both the lead s-bot and the follower s-bot illuminate their
green LEDs. The lead s-bot switches to state Rotate after
a timeout. Follower s-bots switch into state Rotate when
they see red and green LEDs in front of them.

State Rotate

3) Lead S-Bot: The lead s-bot continually compares the
current orientation of the swarm-bot against the remem-
bered hill orientation. If the swarm-bot is appropriately
oriented and the lead s-bot is at the end of the swarm-
bot closest to the hill, the lead s-bot switches into state
Adaptive Phototaxis. Otherwise, the swarm-bot needs
to rotate—the lead s-bot moves in a direction perpendicular
to the orientation of the swarm-bot so as to rotate the swarm-
bot either clockwise or anti-clockwise as appropriate.

While rotating, the lead s-bot communicates rotation in-
structions to the follower s-bots by illuminating its green

TABLE I
EXPERIMENTAL RESULTS FOR ENVIRONMENTS WITH THE

DIFFICULT HILL. EACH CONTROLLER WAS EVALUATED IN 60
INDEPENDENT TRIALS (20 TRIALS PER HILL ORIENTATION).

Controller Assembled Completed

Phototaxis-Only 0% 0%

Adaptive Self-Assembly 100% 35%

Morphology Aware 100% 100%

0
2
0

4
0

6
0

8
0

0
2
0

4
0

6
0

8
0

1 (90 ) 3 (125 )

A
c
u
te

 A
p
p
ro

a
c
h
 A

n
g
le

 (
d
e
g
re

e
s
)

Hill Orientation

2 (55 )

Fig. 8. Box-and-whisker plot showing acute approach angles (orientation of
the swarm-bot with respect to the orientation of the hill when the swarm-bot
first makes contact with the hill). If the swarm-bot approached the hill more
than once, only data from the final approach is shown. Each box represents
20 trials. White boxes: swarm-bots without morphology awareness. Gray
boxes: swarm-bots with morphology awareness.

LEDs in the direction in which it is moving and its red LEDs
in the opposite direction.

4) Follower S-Bot: If the follower s-bot can see red to its
left and green to its right, it interprets this as an instruction to
rotate the swarm-bot clockwise. It therefore moves to its left
(in Fig. 7 the s-bot furthest from the hill is a follower s-bot
carrying out a ‘rotate clockwise’ instruction). If the follower
s-bot can see red to its right and green to its left, it instead
rotates the swarm-bot anti-clockwise by moving to its right.
If the follower s-bot only detects red (without any green), it
switches into state Adaptive Phototaxis.

State Simple Phototaxis

Both the lead s-bot and the follower s-bot illuminate their
blue LEDs and perform collective phototaxis.

B. Results

Table I summarises the results for the morphology aware
controller in the difficult hill environments. Over 60 trials,
the robots achieved the optimal task completion rate of 100%
(see last row of the table). This increase in task completion
rate can be attributed to morphology awareness, that ensures
the swarm-bot is appropriately rotated with respect to the hill.
The effectiveness of the rotation mechanism can been seen
in Fig. 8. Morphology aware swarm-bots orient themselves



against each of the three hill orientations significantly better
than swarm-bots that are not morphology aware (two-tailed
Mann-Whitney, p < 0.001).

When the s-bots leveraged the morphology of the con-
nected swarm-bot in a task specific way, they achieved an
optimal completion rate. Note, however, that the morphology
aware controller required additional time for task comple-
tion, as the swarm-bot has to retreat back from the hill,
rotate, and approach the hill with a different orientation. The
rotation mechanism on average took up 37.1% of the total
task completion time.

VI. CONCLUSION

Groups of autonomous robots can use self-assembly to
work together and overcome the physical limitations of
individual robots. In this study we presented a quantita-
tive analysis of the performance benefits of self-assembly
in a robotic system. We showed that simple advantages
of scale derived from acting as a physically larger self-
assembled entity allowed for a significant improvement in
task completion (from 0% to 35%). We went on to show
that significant benefits in system efficiency could be derived
by making self-assembly adaptive—allowing the robots to
choose when and if to self-assemble based on the nature of
the environments they encounter. Finally, we demonstrated
that significant improvements in task completion (from 35%
to 100%) could be achieved if the robots leveraged their
connected morphology in a task specific way.

The controllers used in this study were designed to be
scalable. In particular, each robot executed the same finite
state machine independently and only local (visual) commu-
nication was used. The scalability of the core self-assembly
component has been verified previously with up to 16 real
robots [6]. It remains, however, to test the scalability of the
adaptive self-assembly mechanism and of the morphology
aware controller. This will require the design of a new robotic
task, since the current robotic task has already been solved
optimally with two robots.

Our system was designed to leverage a particular con-
nected morphology, but had no way of selecting what
morphology was formed. We believe that robotic systems
could benefit by using ‘morphology selection’ in addition
to the ‘morphology awareness’ we demonstrated in this
paper. To this end, we are currently investigating ways
of generating specific connected morphologies using self-
assembling robots [3].
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