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Abstract. In this paper we describe a model in which artificial evolution
is employed to design neural mechanisms that control the motion of two
autonomous robots required to communicate through sound to perform
a common task. The results of this work are a “proof-of-concept”: they
demonstrate that evolution can exploit a very simple sound communica-
tion system, to design the mechanisms that allow the robots cooperate
by employing acoustic interactions. The analysis of the evolved strategies
uncover the basic properties of the communication protocol.

1 Introduction

This paper is about the evolution of acoustic communication in a two robot
system, in which the agents are required to coordinate their efforts to perform
a common task (see Sec. 2). The robots’ mechanisms are determined by design
methods referred to as Evolutionary Robotics (see [6]). That is, an artificial evo-
lutionary process sets the parameters of neural networks controllers. The latter
are in charge of the robots’ actions by setting the states of the agents’ actua-
tors. Although from a different perspective and with different motivations, the
issue of the evolution of acoustic communication has already been investigated
in several research works. Some of these works model aspects of the evolution of
communication in living organisms (see [7,4,10]). Other studies aim to engineer
acoustic communication systems that improve the effectiveness of the robots’ col-
lective responses (see [9,8,1]). Either biologically or engineering inspired these
studies exploit the properties of the evolutionary robotics approach in which
the designer is not required to make strong assumptions about the essential fea-
tures on which social interactions are based—e.g., assumptions concerning what
communication is and about the requirement of individual competences in the
domain of categorisation and naming. The results of the evolutionary process
(i.e., the behaviour of the robots and the underlying mechanisms) inform the
designer on the effects that the physical interactions among embodied agents
and their world have on the evolution of individual behaviour and social skills.

Following this line of investigation, our work aims to demonstrate the effec-
tiveness of a very simple sound signalling system in a context in which the robots
are demanded to share individual experiences to build a common perspective of
their world. The robots can communicate by using an extremely simple binary



signalling system (i.e., ON/OFF). As far as we know, this is the first study
that investigates a communication scenario in which a bi-directional interac-
tion is required by the robots to accomplish a common goal. Communication is
based on the emission in time of asynchronous and mutually determined single
tone signals. The results of this work should be taken as a “proof-of-concept”
concerning the potentiality of the proposed approach to the design of acoustic
communication mechanisms in multi-robot systems. We demonstrate that it is
possible to use evolution to define the mechanism underlying a bi-directional
communication protocol based on a very simple acoustic system.

2 The task

The robot environment is a rectangular arena–120cm by 50cm—divided into two
equal sides by a horizontal bar that revolves—i.e., the revolving door. There are
three lights L1, L2 and L3. When L1 and L2 are turned on, L3 is turned off and
vice versa. L1 can only be seen by a robot located in the lower side of the arena
while L2 can only be seen by a robot located in the upper side of the arena. L3

can be seen from anywhere in the environment. The arena floor is white except
in the proximity of L1 and L2 up to a distance of 15cm from the lights, where
the floor is painted in black or grey. The robots can experience four different
combinations of black and grey zones (see Fig. 1). The type of environment in
which the robots are located is labelled according to the combination of the
colour of the floor in the two painted zones. In detail, the environments are
labelled Exx, where the first digit corresponds to the colour of the floor in the
proximity of L1 and the second digit to the colour of the floor near L2. Grey
colour corresponds to 0, while black colour corresponds to 1. The four types of
environment are: E10, E01, E00, and E11. The revolving door rotates from the
horizontal to the vertical position if simultaneously pushed by both robots in the

E10 E01 E00 E11

Fig. 1. The four environments E10, E01, E00, and E11. L1, L2 and L3 refer to the
lights. The revolving door is indicated by the horizontal bar in the centre of the arena.
In each environment, the arrows indicate the direction in which the door revolves. The
cylinders with spikes on the white floor represent the robots.



proper direction. Pushing forces exerted by a single robot on the revolving door
are not enough to open it. The direction of rotation changes according to the
type of environment. The robots have to exert forces to make the door rotate
(a) clockwise, if they are located in E00 or in E11; (b) anticlockwise, if located
in E10 or in E10 (see the arrows in Fig. 1).

At the beginning of the first trial and in those that follow an unsuccessful
one, the robots are randomly placed in the proximity of L3. In trials following a
successful one, the robots are not repositioned. The sequence of desired actions
that each robot is demanded to carry out during a trial can be decomposed
into two phases. At the beginning of the first phase, L1 and L2 are turned on,
the revolving door is in the horizontal position and the colour of the floor in
the proximity of L1 and L2 is set according to the type of environment that
characterises the trial. During this phase, the robots are required to find the
painted zone in their side of the white arena floor and remain for at least 6s
on the painted zone. This exploration is facilitated by the presence of the lights
that can be used as beacon (i.e., L1 for the robot located in the lower side of the
arena and L2 for the robot located in the upper side of the arena). The first phase
terminates once the 6s on the painted zones are elapsed for both robots. At this
point, L1 and L2 are turned off, L3 turned on, and the second phase begins. In
the second phase, the two robots are required to move back towards the middle
of the arena, approach the revolving door, and simultaneously push the door
in order to open it and to reach the previously inaccessible opposite side of the
arena. As mentioned above, the direction of rotation changes according to the
type of environment. Therefore, to rotate the revolving door from the horizontal
towards the vertical position the robots are required to “tell” each other the
colour of the floor in the proximity of light—L1 or L2—previously approached.
A trial successfully terminates once both robots, by rotating the revolving door,
move into the opposite side of the arena, and reach a distance of 24 cm from L3.
At the end of a successful trial, L3 is turned off, L1 and L2 are turned on, the
rotating door automatically returns to the horizontal position and a new trial
begins. A trial is considered unsuccessful, if a single robot exerts forces in both
arms of the revolving door (i.e., west and east of L3). This behaviour, referred
to as trial-and-error strategy, is penalised by the fitness function (see Sec. 4).

Note that this task requires coordination of actions, cooperation and com-
munication between the robots in order to successfully open the revolving door.
For each robot, the perception of a grey or black floor can be associated both to
a clockwise and anticlockwise rotational movement of the revolving door. Only
the combination of the two coloured zones unambiguously identifies a rotational
movement. Since a robot can only walk on a single zone per trial, the task can
be successfully accomplished in all the environmental conditions only by a group
of robots that communicate through sound. Without communication, a single
robot can only exploit a trial-and-error strategy. By using a simple sound sig-
nalling system the robots should inform each other on the colour of the floor in
the proximity of the light they perceive—L1 or L2—and consequently push the
door in the proper direction as explained above.



3 Methods

The robot and its world are simulated using simulation software based on Open
Dynamic Engine (see http://www.ode.org/), a 3D rigid body dynamics sim-
ulator that provides primitives for the implementation of detailed and realistic
physics-based simulations. Our simulation models some of the hardware charac-
teristics of the real s-bots. The s-bots are small wheeled cylindrical robots, 5.8
cm of radius, equipped with a variety of sensors, and whose mobility is ensured
by a differential drive system (see [5]). Our simulated robot has a differential
drive motion provided by a traction system composed of four wheels: two lat-
eral, motorized wheels and two spherical, passive wheels placed in the front and
in the back, which serve as support. The four wheels are fixed to the cylindrical
body that holds the sensors. In particular, robots make use of 5 infrared sensors
IRi, two ambient light sensors ALi, a floor sensor FS, a loudspeaker SO to emit
sound and an omni-directional sound sensor SI to perceive sound (see Fig. 2a).
Light levels change as a function of the robot’s distance from the lamp. FS,
placed underneath the robot, detects the level of grey of the floor. It outputs the
following values: 0 if the robot is positioned over white floor; 0.5 if the robot is
positioned over grey floor; 1 if the robot is positioned over black floor. SO pro-
duces a binary output (on/off). SI has no directionality and intensity features.
10% uniform noise is added to IRi and ALi readings, the motor outputs and
the position of the robot.

The controller of each agent is composed of two modules referred to as MC

and MM (see Fig. 2b). The modularisation is hand-coded to facilitate the evolu-
tion of successful behavioural strategies. MC is a non-reactive module, that is a
six neurons fully connected continuous time recurrent neural network (CTRNN,
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Fig. 2. (a) The simulated robot. IRi, i ∈ [1, 5] are the infrared sensors; ALi, i = [1, 2]
are the ambient light sensors; FS is the floor sensor; SI is the sound sensor (i.e.,
the microphone); SO is the sound actuator (i.e., the loudspeaker); M1 and M2 are
respectively the left and right motor. (b) The network architecture: module MC and
module MM . For MC only the efferent connections for one neuron are drawn. SC is
the binary categorisation signal sent, at each updating cycle, by MC to MM .



see also [2]). MC is required to detect in which type of environment the robot
is currently located. The categorisation has to be based on the FS’s readings
of both robots. Thus, it demands communication between the agents. For this
reason, MC takes input from FS and SI and it outputs the state of the SO and
SC (i.e., the binary categorisation signal). In other words, at every updating
cycle, MC is in charge of (a) managing sound by producing the signal the robot
emits and by receiving the signal of either robot, and (b) “informing” MM on
the type of environment in which the robot is currently located by setting the
value of the binary categorisation signal SC either to 0 or 1. MM is a reactive
module, that is a feed-forward artificial neural network made of eight sensory
neurons and two output neurons. MM is demanded to (a) guide the robot avoid-
ing collisions with the arena walls, and (b) “parse” the value of SC to determine
in which side to push the revolving door (i.e., anticlockwise if current trial in
E10 or E01, clockwise if current trial in E00 or E11, see also Fig. 1). MM takes
input from IRi, i ∈ [1, 5], from ALi, i = [1, 2], and SC , and it outputs the
speed of the robot’s wheels. The following associations (a) SC = 1, robots lo-
cated in E10 or E01, anticlockwise rotational direction of the revolving door, and
(b) SC = 0, robots located in E00 or E11, clockwise rotational direction of the
revolving door, are determined a priori by the experimenter (see Sec. 4). The
neural mechanisms and the communication protocol required by the robots to
build these relationships from the sensors’ readings are set by evolution.

The states of the neurons of MC and MM are governed by the equations (1)
and (2) respectively:

dyi

dt
=

1
τi
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(2)

where, using terms derived from an analogy with real neurons, yi represents the
cell potential, τi is the decay constant, g is a gain factor, Ii the intensity of
the sensory perturbation on sensory neuron i, ωji the strength of the synaptic
connection from neuron j to neuron i, β the bias term, σ(yj + β) the firing rate.
The parameters ωji, τ , β and g are genetically encoded. Cell potentials are set
to 0 any time the network is initialised or reset, and circuits are integrated using
the forward Euler method with an integration step-size of dt = 0.1. Note that
the cell potentials of MM ’s neurons do not depend on time (see equation (2)).
That is, the neurons’ decay constant τ is set to 0.1, as the integration step-size
dt. In MC , the cell potentials yi of the 5th and the 6th neuron, mapped into [0,1]
by a sigmoid function σ, set the state of the robot’s sound actuator SO and
of the binary categorisation signal SC . The robot emits a sound if SO ≥ 0.5.
SC = 1 if σ(y6 + β6) ≥ 0.5 otherwise SC = 0. In MM , the cell potentials yi of
the 9th and the 10th neuron, mapped into [0,1] by a sigmoid function σ and then
linearly scaled into [−6.5, 6.5], set the robot motors output.



A simple generational genetic algorithm is employed to set the parameters of
the networks [3]. The population contains 80 genotypes. Generations following
the first one are produced by a combination of selection with elitism, recombina-
tion and mutation. For each new generation, the three highest scoring individuals
(“the elite”) from the previous generation are retained unchanged. The remain-
der of the new population is generated by fitness-proportional selection (also
known as roulette wheel selection) from the 64 best individuals of the old pop-
ulation. Each genotype is a vector comprising 67 real values, chosen uniformly
random from the range [0, 1]. The first 18 genes are used to set the parameters
of MM (i.e., 16 connection weights, 1 bias term and 1 gain factor both shared by
all the input neurons). The other 49 genes are used to set the parameters of Mc

(i.e., 36 connection weights, 6 decay constants, 6 bias terms, and 1 gain factor).
More details on the genetic algorithm and on the genotype-networks mapping
can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2007-005.

4 The fitness function

During evolution, each genotype is translated into a robot controller (i.e., mod-
ules MC and MM see Sec. 3), and cloned in each agent. Then, the two robot
group is evaluated two times in each environment type E11, E00, E01, and
E10, for a total of eight trials. Note that the sequence order of the environ-
ment type experienced by the robots—randomly chosen at the beginning of
each generation—has a bearing on the overall performance of the group since
the robots’ controllers are reset only at the beginning of the first trial. Each
trial differs from the others in the initialisation of the random number genera-
tor, which influences the robots’ starting position and orientation anytime the
robots are positioned, and the noise added to motors and sensors. The robots
are randomly placed in the arena at the beginning of the first trial and repo-
sitioned in subsequent trials following an unsuccessful one. Within a trial, the
robots life-span is 90 simulated seconds (900 simulation cycles). A trial is ter-
minated earlier in case a robot crashes with the arena walls, or if the group
successfully accomplishes its task. For each trial e ∈ [1, 8], the group is rewarded
by an evaluation function which seeks to assess the ability of the robots to
open the revolving door located at the centre of the arena (see Sec. 2). This
requires the robots to be able to determine the nature of the environment (i.e.,
E11, E00, E01, or E10) by using acoustic communication. The final fitness F at-
tributed to a group controlled by a specific genotype is the average group score
over a set of eight trials. A detailed illustration of the fitness function can be
found at http://iridia.ulb.ac.be/supp/IridiaSupp2007-005. Note that F
doesn’t refer anyhow to signalling behaviour. F rewards the robots for accom-
plishing the task as detailed in Sec. 2. However, due to the nature of the task,
the robots can be successful only if they coordinate their actions using the sound
signalling system. By leaving signalling behaviour out of the fitness function, we
clean our model from preconceptions concerning what (i.e., semantics) and how
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Fig. 3. (a) Fitness F of the best groups at each generation of ten evolutionary runs.
(b) Results of post-evaluation tests, showing for the best evolved groups of each run
the (%) of successful trials in each type of environment. In grey the successful groups.

(i.e., syntax) successful group communicates, and we let evolution determine the
characteristics of the communication protocol.

5 Results

Ten evolutionary simulations, each using a different random initialisation, were
run for 4800 generations. Given the nature of the fitness function, the highest fit-
ness score that a group can reach is 3.4. This score corresponds to the behaviour
of a group in which each robot (i) finds the coloured zone on the white arena
floor; (ii) communicates to the robot at the opposite side of the arena the colour
encountered in its side; (iii) uses the combination of colours to properly set the
binary categorisation signal SC ; and (iv) pushes the revolving door in the proper
direction until it reaches the opposite side of the arena. Fig. 3a shows the fitness
of the best groups at each generation for each evolutionary run. Notice that only
two evolutionary runs managed to produce groups whose average fitness F is
close to the maximum score. However, fitness scores lower than 3.4 might be
associated to equally successful alternative strategies.1 Thus, in order to have a
better estimate of the behavioural capabilities of the best evolved controllers, we
post-evaluate, for each run, the genotype with the highest fitness. These groups
are referred to as gi, i ∈ [1, 10]. The entire set of post-evaluations (i.e., 2400
trials, 100 evaluations for each permutation, 100*N! with N=4) should establish
1 Data not shown, movies of successful strategies, and further methodological details

can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2007-005.



whether a group of robots is capable of accomplishing the task as described in
Sec. 2 in all the four types of environment. The results of the post-evaluation
tests are shown in Fig. 3b. The data confirm that only two groups g2 and g4 have
a success rate higher than 98% in all four types of environment (see Fig. 3b, grey
rows); g1, g3, g5, g8 and g9 are capable of carrying out the task only when the
door revolves clockwise, and g10 only when the door revolves anticlockwise; g6

and g7 fail in only one type of environment. From a behavioural point of view,
the failure are due to trial-and-error strategy (data not shown, see footnote 1).
That is, during the second phase of the task, both robots push the revolving door
both west and east of L3 instead of exerting forces directly on the proper side of
the bar. Failure due to collisions are very rare. The lower success rate of g10 in
E00 and E11 is mainly due to the fact that the robots of this group are not able
to exert enough forces in order to rotate the revolving door (data not shown, see
footnote 1). From a mechanism point of view, the failure of each single robot can
be caused by either (a) MC not capable of correctly categorising the environ-
ment by properly setting SC as made explicit in Sec. 3 or (b) MM not capable of
“interpreting” the value of SC as produced by MC . Post-evaluation tests show
that for almost all the unsuccessful groups it is MC that by setting incorrectly
the value of SC , does not allow MM to choose the correct direction of rotation
of the revolving door (data not shown, see footnote 1). It seems that robots of
unsuccessful groups are not capable of informing each other about the colour of
the painted zone in the proximity of L1 and L2. Consequently, in the absence
of an effective communication protocol, it turns out to be impossible for MC

to properly set SC . In the following paragraphs, we analyse the communication
protocol used by a successful group.

Fig. 4a illustrates the structures of signalling behaviour of the successful
group g4. In this post-evaluation test, the group undergoes 4 trials with the
environment presented in the following sequence: E10, E01, E00, and E11. In
each trial the robots don’t emit sound before reaching the coloured zones. The
perception of grey doesn’t induce the emission of sound. Therefore, in E00 no
robots emit sound (see Fig. 4 trial 3). The absence of sound in the environment
lets MC set SC to 0 in both robots. SC = 0 is correctly “interpreted” by MM

modules so that both robots push the revolving door clockwise. The perception of
a black zone induces the robots to emit intermittent bursts of sound (see Fig. 4a
trials 1, 2 and 4). In trials E10 and E01, the perception of these intermittent
bursts induces the robot that is on grey to emit a continuous tone. The perception
of a continuous tone induces the robot on black to imitate its fellow, so that at the
time when L3 turns on (see Fig. 4b, dotted line) both robots emit a continuous
tone. The presence of sound in the environment lets MC set SC to 1 in both
robots. SC = 1 is correctly “interpreted” by MM modules so that both robots
push the revolving door anticlockwise. Both robots autonomously stop emitting
sound before the end of a trial in E10 or E01, few seconds after the aperture
of the revolving door. Thus, at the beginning of the following trial both robots
are in the state of not emitting sound. In trials E11, the asynchronous emission
of intermittent bursts of sound by both robots determines moments of silence
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Fig. 4. Post-evaluations of group g4. Dashed lines refers to the robot placed at the
beginning of trial 1, in the upper side of the arena; continuous lines refer to the robot
placed in the lower side of the arena. (a) Sound signals. (b) Floor sensors readings.
Dotted line indicates the state of L3, 1 = ON, 0 = OFF. On the x axis is indicated the
time of start and end of each trial.

which inhibit signalling behaviour. At the time when L3 turns on, none of the
robots is signalling. The absence of sound in the environment lets MC set SC

to 0 in both robots. SC = 0 is correctly “interpreted” by MM modules so that
both robots push the revolving door clockwise as in E00.

6 Conclusions

In this paper, we described a model in which artificial evolution is employed
to design neural mechanisms that control the motion of autonomous robots
required to communicate through sound to perform a common task. The re-
sults of this work are a “proof-of-concept”: they demonstrate that evolution can
exploit a simple sound system, detailed in Sec. 3, to design the mechanisms
that allow two robots cooperate by using bi-directional acoustic interactions.
Post-evaluation tests illustrate the nature of the robots’ communication proto-
col based on entirely evolved asynchronous and mutually determined single tone
signals. Concerning future work, we believe that priority should be given to in-
vestigations aimed to limit the amount of a priori assumptions that we have
been forced to make in this first study. In particular, we are referring to the
modularisation of the control structures and the arbitrary associations detailed



in Sec. 3. In spite of this, we believe that the results are particularly encourag-
ing. A complex syntax may emerge in scenarios in which semantic categories are
linked to more articulated sensory-motor structures (e.g., neural structures that
underpin object recognition processes rather than the perception of coloured
zones).
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