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Abstract. We consider a swarm of robots equipped with an infrared
range and bearing device (Ir-RB) that is able both to make estimates of
the relative distance and angle between two robots in line-of-sight (LoS)
and to transfer data between them. Through the Ir-RB, the robots cre-
ate a LoS mobile ad hoc network (LoS MANET). We investigate dif-
ferent ways to implement a swarm-level distributed navigation function
exploiting the routing information gathered within the LoS MANET.
In the scenario we consider, a number of different events present them-
selves in different locations. To be serviced, each event requires that a
robot with the appropriate skills comes to its location. We present two
swarm-level solutions for guiding the navigation of the selected robots
towards the events. We use a bio-inspired ad hoc network routing pro-
tocol to dynamically find and maintain paths between a robot and an
event location in the LoS MANET, and use them to guide the robot to
its goal. The performance of the two approaches is studied in a number of
network scenarios presenting different density, mobility, and bandwidth
availability.

1 Introduction

In parallel with recent and continuous advances in the domain of mobile ad hoc
networks (MANETs), the field of networked robotics is attracting an increasing
interest. The idea is to equip teams or swarms of robots with wireless communi-
cation devices and allow them to exchange information to support cooperative
activities and fully exploit ensemble capabilities. In this work, we use networked
robotics in a situation where a swarm of robots needs to execute tasks in an
indoor area. The term “swarm” refers here to a potentially large group of small
robots that collaborate using weak coordination mechanisms [8]. The tasks cor-
respond to events that need to be serviced in given locations. Each event can be
taken care of by a single robot able to provide a specific set of functionalities.
A full solution to this problem involves mechanisms for announcing events, for
the allocation of robots to events and for guiding robots to event locations. Here
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we focus on robot navigation: how can a robot find an event’s location after the
event has been advertised and the robot has been selected. An important aspect
of the problem under study is the fact that the robots cooperatively and trans-
parently help each other for navigation while they are at the same time involved
in a task of their own. This is different from most of previous works, where all
robots are involved in solving a single task cooperatively (e.g. collaboratively
guide one robot to a destination [12, 11]).

The robots our work is based on are the foot-bots [2], which are small mobile
robots developed within the Swarmanoid project [1]. They move around on a
combination of tracks and wheels, and are equipped with three different devices
for wireless communication: Wi-Fi, Bluetooth, and an infrared range and bearing
system (Ir-RB). The latter one consists of a number of infrared transmitters
and receivers placed all around the robot. The system allows both the wireless
transmission of data over short distances along line-of-sight (LoS) paths, as well
as the estimation of the relative distance and angle to other robots. We make use
of the Ir-RB system to create a LoS MANET between the robots of the swarm
(in parallel, the Wi-Fi MANET can be used for announcing and allocating the
events as well as to transmit the geographic data regarding LoS paths if the Ir-RB
bandwidth is insufficient). The core idea to implement a distributed navigation
function is to set up a route over the LoS MANET between a robot that wants
to serve an event and the event’s location. Since each robot in the swarm is
involved in its own task, this MANET presents frequent and unexpected topology
changes. Therefore, we rely on a bio-inspired adaptive routing algorithm, called
AntHocNet, which is able to find and maintain routes in the face of high network
mobility and has been shown to give efficient and robust performance also in large
networks and in cluttered environments [6, 4]. The established route is used for
robot navigation. We distinguish two modes of operation: in the first the robot
physically follows (robot by robot) the route formed via the wireless connections,
while in the other the route is used to make estimates of the relative position
of the event, so that the robot can aim to go there independently of the actual
data route.

The proposed system has some important advantages. First, thanks to the
use of the Ir-RB system, robots can get relative positioning information without
a central reference system such as GPS. Second, since robots transparently guide
each other via wireless communication and are supported by an adaptive routing
algorithm, they do not need to adapt their movements as is done in other ap-
proaches (e.g., based on visual communication [11]). At the same time, they can
get involved in tasks of their own, improving the possibilities for parallel task
solving. Finally, the possibility to base robot navigation on an estimate of the
relative location of the event to be serviced, and independent from the actual
MANET route, allows to overcome moments of interrupted network connectivity.

This paper is organized as follows. In Section 2, we describe the robots for
which we developed this work. Then, in Section 3, we present our communication
aided robot navigation system. After that, in Section 4 we present and discuss
the results of our experiments.



2 The robots and their communication interfaces

A foot-bot is about 15 cm wide and long and 20 cm high. It moves on the
ground making use of a combination of tracks and wheels. For basic obstacle
avoidance and navigation, the foot-bot has 24 short-range infrared sensors all
around, 8 infrared sensors directed at the floor, and a rotating platform with a
long-range infrared sensor (maximum range 150 cm, precision 2 cm), which gives
one measurement per second of obstacles all around with a step size of 2o. For
communication, the foot-bot has Wi-Fi and Bluetooth as well as the mentioned
Ir-RB system, which is made of 26 infrared emitters and 16 receivers, placed
around and on top of the foot-bot. Based on the quality of the received signals,
it calculates an estimate of the relative bearing and range to other robots in LoS
equipped with the same system. The maximum range of the system is about 3 m,
and the precision is 20% for range estimates and 30o for bearing estimates. The
system also allows LoS communication with a nominal bandwidth of 40 kbps.1

Finally, it also contains a number of other features, which are not relevant for
the work presented here. For complete details of the foot-bot, as well as of the
other robots developed in the Swarmanoid project the reader can refer to [2].

The foot-bots are derived from a previous robot called the s-bot [10]. Since the
foot-bots are currently not yet available our work is based on simulation, whereby
the simulator has been derived from an extensively tested s-bot simulator that
has been refined and extended to include the new foot-bot features [3].

3 Use of LoS routing paths for robot navigation

The main idea in our approach is to use an ad hoc routing protocol to dynam-
ically set up and maintain data routes in the LoS MANET between the event
and the robot that can serve it. We assume that each event is represented by a
robot that remains static at the event location and does all the communications
for the event. The route information in the LoS MANET is then used directly
or indirectly to guide robot navigation towards the event location.

3.1 AntHocNet, the MANET routing algorithm

To establish routes in the MANET, we make use of AntHocNet, a MANET
routing algorithm based on ideas from Ant Colony Optimization (ACO) [5].
Here we give an high level overview of the algorithm. For more details, see [6].

In AntHocNet, a node s requiring a route to a destination d sends out a
reactive forward ant. This is a control packet that has as a task to find a path to
d. At any node i in the network, the reactive forward ant can be locally broadcast
or unicast, depending on whether or not i has routing information available for
1 These are the values that have been used for the simulation experiments at the time
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improved, such that the latest Ir-RB system provides a much better precision and
performance.



d. When a node receives multiple copies of the same ant, it forwards only the
first one it receives, and discards all subsequent copies. Once the ant reaches d, it
is returned to its source node s, following the same path it came over. On its way
back, the ant measures the quality of the path and sets up routing information
towards the destination. Path quality is measured based on the signal strength
of the wireless links along the path. Routing information takes the form of next
hop pointers associated to relative goodness values based on the path quality
measurements. These goodness values are called pheromone values, in accordance
to the ACO inspiration of the algorithm, and are stored in routing tables.

Once the route is set up, the source node s starts a route maintenance and
improvement process, in order to continuously adapt the existing route to the
changes in the dynamic network and find new and better routes when possible.
This process is based on two subprocesses: pheromone diffusion and proactive
ant sampling. The aim of pheromone diffusion is to spread out pheromone infor-
mation that was placed by the ants. Nodes periodically broadcast messages con-
taining the best pheromone information they have available. Neighboring nodes
receiving these messages can then derive new pheromone for themselves (using
information bootstrapping, similar to Bellman-Ford updating schemes), and fur-
ther forward it in their own periodic broadcasts. This way, a field of diffused
pheromone is set up that points out possible routes towards the destination.
However, since this information is based on the use of periodic (low-frequency)
broadcast messages, it can temporarily contain erroneous information. This is
where the second process, proactive ant sampling, comes in. At constant in-
tervals, node s sends out proactive forward ants. Like reactive forward ants,
these are control packets that try to find a route towards the destination. They
follow the pheromone spread through the diffusion process. When they reach
the destination, they travel back to the source setting up a route indicated by
pheromone. This way, they update and validate the information found through
the pheromone diffusion process and find new routes in the changing MANET.

In case of a route failure, AntHocNet sends link failure notification messages.
When a node i perceives that a link has failed on an existing route, it broadcasts
to its neighbors a message indicating the destination it has lost the route to. A
neighbor receiving this message updates its routing information accordingly. If it
observes the loss of a route due to this update, it sends out its own notification.

3.2 Network routing and robot navigation

When a robot wants to serve a particular event, it uses the AntHocNet routing
algorithm to set up a data route to the robot signaling the event. Once a route is
set up, it amounts to a set of nodes (robots) connecting the service robot to the
event in the LoS MANET, together with the (noisy) information of their relative
(distance, angle) location. We foresee two possible ways of using this LoS routing
information. The first is that the robot physically follows the data route in the
network robot by robot. The other is that the full route information serves to
calculate an estimate of the relative location of the event, and the robot moves
directly in that direction.



Locally following the routing path. In this approach, once the service robot
has established a data route in the LoS MANET, it starts moving towards the
estimated location of the nearest robot (next hop) in the data route. While
moving, the robot continuously tries to re-sample the route in order to get a
more up-to-date estimate of the route towards the event, and, more in particular,
of the location of the next hop, which it is moving to. If the route is lost at any
time (e.g. due loss of connectivity), the robot remains static and repeatedly tries
to establish a new route. According to this behavior, all robots get continuous
measurements of the relative distance and angle to each of their neighbors in the
LoS network. Since these measurements are affected by precision errors, each
robot aggregates them using moving averages:

d̂j
i (t) = γd̂j

i (t− 1) + (1− γ)dj
i (t)

α̂j
i (t) = γα̂j

i (t− 1) + (1− γ)αj
i (t),

(1)

where d̂j
i (t) is robot i’s estimate at time t for the distance to neighbor robot j,

and α̂j
i (t) is i’s estimate of the angle towards j with respect to its own orientation.

dj
i (t) is the new measurement for the distance received by i at time t, and αj

i (t)
is the new measurement for the angle. γ ∈ [0, 1[ defines how quickly the local
estimate is adapted to new measurements (we use γ = 0.7 in the experiments).

Having the robot physically follow the data route has a number of advantages
and disadvantages. A first advantage is that it is a simple process. A second
advantage is that it provides obstacle-free paths. This is because routes are
composed of LoS links, that is, of a feasible path to the event. A disadvantage
is that the robot can have difficulties following the path when it changes often
and abruptly. This can happen when the robots move a lot or in the presence
of obstacles. Another disadvantage is that the robot does not know where to
move when there is no route available. This leads to low performance in cases
of intermittent network connectivity, e.g. when there are few robots around or
when obstacles block signals. A final disadvantage is that the path followed by
the robot can be substantially longer than the shortest path, especially when
the shortest path in the LoS MANET does not correspond to the geographic
shortest path (e.g., this can easily happen when robot density is low [13]).

Following path-level estimates of destination location. In this approach
the constructed data route is used to give the searching robot an estimate of
the relative distance and angle to the event location, so that it can move there
directly without following the route. According to AntHocNet’s behavior, to
refresh the data route, the service robot periodically sends proactive forward
ants towards the destination node (the event robot), which are then sent back to
set up a new data route. On their way back, we let these ants gather the locally
maintained estimates of the distance d̂j

i (t) and angle α̂j
i (t) to each next hop

and previous hop (see Equation 1) and combine them geometrically to make an
estimation of the relative distance Dn

i (t) and angle An
i (t) to the event location

n. We represent the path followed by the ant as P = (1, 2, . . . , n−1, n), whereby



node 1 is the searching robot and node n is the event location (so the ant travels
from n to 1). At any node i < n on this path, Dn

i (t) and An
i (t) are incrementally

calculated as follows, where the common index t is dropped for notational clarity:

Dn
i =





d̂n
i if i = n− 1,

√
(d̂i+1

i )2 + (Dn
i+1)

2 − 2d̂i+1
i Dn

i+1 cos
(
An

i+1 − α̂i+1
i

)
if i < n− 1.

An
i =





α̂n
i if i = n− 1,

arccos

[
(d̂i+1

i )2+(Dn
i )2−(Dn

i+1)2

2d̂i+1
i Dn

i

]
if i < n− 1.

(2)

Once the searching robot has received a first estimate of the distance Dn
1 and

angle An
1 towards the event location, it starts moving in straight line towards its

goal. As the robot is going, the routing algorithm keeps sending proactive ants
regularly, making new estimates available. Having a continuous stream of new
estimates is important to overcome errors in previous estimates and to keep an
updated view of the event location. Errors in the estimate stem from two main
causes. First of all, the event location estimate is based on a composition of local
distance and angle estimates along the links of the paths, each of which contains
some error, and therefore the total estimate has an error that increases with
the number of hops. Hence, at large distances, the event location estimate only
offers a rough guideline for the robot’s movements, while at smaller distances,
the estimate becomes more accurate. The second source of errors is due to the
robot’s own movements. As the robot is going, it needs to adapt the location
estimates according to its own rotations and displacements, using feedback from
the local odometry. This causes the estimate to gradually become less reliable.
Therefore, the periodic sending of proactive ants is needed to keep renewing it.

Using estimates of the relative event location has the advantage that the
robot is not directly dependent on the LoS route itself or on its persistence for
its movements. It is sufficient to get a new estimate from time to time to update
the global estimate. Figure 1 shows the sample of a typical behavior in the error
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Fig. 1. Typical evolution of the error in the dis-
tance estimate for follow-estimate.

of the distance estimate in the ba-
sic experimental setting (see next
section). The error shows large
fluctuations at the beginning,
that is at large distances, but also
a generic decreasing trend and a
rapid convergence to zero when
approaching the event location.
On the other hand, this approach
cannot guarantee an obstacle free
path, and can run into prob-
lems in presence of many obsta-
cles scattered along the straight
line between the searching robot
and the event location.



4 Experimental results

All tests are done using the Swarmanoid simulator [3]. For each test scenario we
execute 30 independent runs. We report the average with 95% confidence interval
of the time needed for the robot to reach the event and of the distance traveled
compared to the straight line distance. We compare three different navigation
behaviors: the two proposed ones (from now on referred to as Follow route and
Follow estimate) and a sweeping behavior, used as a reference of the performance
that is possible when no communication is used. In this behavior, the robot
knows its location in the room at all times. It goes to the room corner that is
closest to its start location and then starts scanning the room in straight lines
parallel to one of the room walls, until it finds the destination. Moving steps in
the direction of the other room walls are proportional to the radio range. We use
an open space room of 10 × 10 m2. The service and the event robot are located
in opposite corners. The other robots move according to the random waypoint
mobility model (RWP) [9] in order to simulate the fact that they are involved in
tasks of their own and their movements are independent from the task of guiding
the searching robot. They choose a random destination, move to it, pause for
some time and then choose a new random destination. This model fits well the
movements of robots that service sequences of events. All robots are equipped
with a minimal obstacle avoidance mechanism. We report experiments to study
the effect of varying the number of robots and their speed, that equals to study
the effect of varying network density and its topological changing rate. We also
study the effect of changing the proactive ant send interval and that of increasing
the fraction of packet losses during communications. Results concerning the effect
of the presence of obstacles and of multiple events can be found in [7].

Effect of scaling the number of robots. We investigate the influence of the
number of robots on the ability of a searching robot to find an event location. We
vary the number of robots from 10 up to 50. The speed of the robots is 0.15 m/s,
the pause time of the RWP model is 6 s. The results are shown in figure 2. As
can be seen from the graphs, a lower number of robots makes the task difficult
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Fig. 2. Results for tests with increasing numbers of robots.
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Fig. 3. Results for tests with increasing robot speed.

for the communication based behaviors. This is because there is limited network
connectivity and the task to establish and maintain a stable route is therefore
difficult. This affects especially Follow route, which depends on the constant
availability of a route: for this behavior, there is a strong increase in the travel
time for the searching robot. For Follow estimate, the increase of the travel time
is only visible for the lowest number of robots. Interestingly, the travel distance
is not much affected for either of the behaviors. Overall, Follow estimate needs
less time and produces shorter paths than Follow route. The Sweep behavior
needs much more time and produces much longer travel distances, especially as
the number of robots increases. This indicates the general usefulness of using
telecommunications for navigation when a large group of robots is available.

Effect of robot speed. The speed of the searching robot is set to 0.35 m/s.
For the other robots, the speed is varied from 0.1 m/s up to 0.75 m/s. The total
number of robots is fixed to 30. The results for increasing movement speed are
shown in Figure 3. It is interesting to see that the speed of the robots has little
influence on the performance. For Follow route there is a small increase in the
robot travel time, but no noticeable effect on the traveled distance. For Follow
estimate, there is no noticeable effect for either measure. The higher vulnerability
of the Follow route behavior is to be expected, as high node mobility leads to
higher variability and more frequent disconnections of the LoS MANET route, so
that it becomes difficult to follow it hop by hop. The robustness of our approach
with respect to robot speed is an important advantage for its deployment.

Effect of the ant send interval. We evaluate the effect of changing the time
interval in the periodic transmission of proactive forward ants. This parameter
defines the frequency of route updates and hence also the load on the MANET.
In previous tests, we used intervals of 1 s, here we run tests up to 10 s. The
results are shown in Table 1. Follow route is unaffected by the ant send interval,
while Follow estimate shows a slight decrease of performance with increasing
intervals. This is because Follow estimate needs a continuous stream of ants to
keep reducing the error on its estimate of the event location, while Follow route



Table 1. Effect of changing the send interval of proactive ants.

Proactive ant send interval 1 2 3 4 5 6 7 8 9 10
Follow route: Distance ratio 1.24 1.21 1.20 1.21 1.22 1.20 1.12 1.20 1.21 1.22
Follow route: Travel time 96 96 95 94 93 93 90 90 95 93
Follow estimate: Distance ratio 1.05 1.06 1.09 1.10 1.10 1.10 1.10 1.14 1.15 1.14
Follow estimate: Travel time 41 41 42 42 43 43 43 44 45 45

relies only on the presence of the route and can therefore more easily function
with a lower frequency of proactive ants.

Effect of the packet losses. In the Swarmanoid simulator, the MAC and
PHY layers are simulated with a probabilistic model based on two parameters
defining the probabilities of packet loss, θ, and of signal interference (both set
to 0 in the previous experiments). Here, we increase θ from 0 up to the extreme
value of 0.5. An increase in θ results in the decrease of the ability of AntHocNet
to gather up-to-date routing information. The results for the case of 30 robots are
shown in Figure 4. Follow estimate shows no noticeable effect in travel time. In
terms of distance, the average value is stationary but the variance gets larger and
larger. In fact, in presence of large packet losses, the robot can be forced to rely
on poor estimates for relatively long time periods, especially at the beginning
of the search, when paths are longer. Therefore, the initial fluctuations shown
in Figure 1 may become more severe in some scenarios. Follow route depends
critically on the continual availability of route updates. Accordingly, its time
performance shows a rapid degradation for θ ≥ 0.3. The distance performance
is not much affected since the robot stops in absence of new route information.
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Fig. 4. Results for tests with increasing probability of packet losses.

5 Conclusions and future work

We have investigated the use of LoS wireless networking to support cooperative
navigation in a swarm of mobile robots. We have based our work on the foot-bots,



small robots developed in the Swarmanoid project [1], that are equipped with
a LoS infrared device that can be used to both transmit data and return the
relative distance and angle between two robots. We have proposed two solutions
based on the use of a bio-inspired ad hoc network routing protocol to discover and
maintain data routes between a robot and an event location in the LoS network.
The established route is used for robot navigation in two different ways: in the
first, the robot physically follows the route formed via the wireless connections,
in the other the route is used to make estimates of the relative position of the
event. We ran a number of simulation experiments varying the number of robots
and their speed, and studying the sensitivity of the algorithms to variations in
the number of control packets used to gather routing information and in the
probability of packet losses. Both algorithms showed an overall robust behavior,
with the approach based on location estimates outperforming the other. In the
future, we will consider also the other types of robots forming the 3D Swarmanoid
and integrate the navigation function in a task allocation architecture.
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